# SimQN: a discrete-event simulator for the quantum networks
# Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
# University of Science and Technology of China, USTC.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from qns.entity.node.app import Application
from qns.entity.qchannel.qchannel import QuantumChannel
from qns.entity.node.node import QNode
from typing import Dict, List, Optional, Tuple
from qns.network.topology import Topology
from qns.utils.rnd import get_randint
[docs]class RandomTopology(Topology):
"""
RandomTopology includes `nodes_number` Qnodes. The topology is randomly generated.
"""
def __init__(self, nodes_number, lines_number: int, nodes_apps: List[Application] = [],
qchannel_args: Dict = {}, cchannel_args: Dict = {},
memory_args: Optional[List[Dict]] = {}):
"""
Args:
nodes_number: the number of Qnodes
lines_number: the number of lines (QuantumChannel)
"""
super().__init__(nodes_number, nodes_apps, qchannel_args, cchannel_args, memory_args)
self.lines_number = lines_number
[docs] def build(self) -> Tuple[List[QNode], List[QuantumChannel]]:
nl: List[QNode] = []
ll: List[QuantumChannel] = []
mat = [[0 for i in range(self.nodes_number)] for j in range(self.nodes_number)]
if self.nodes_number >= 1:
n = QNode(f"n{1}")
nl.append(n)
for i in range(self.nodes_number - 1):
n = QNode(f"n{i+2}")
nl.append(n)
idx = get_randint(0, i)
pn = nl[idx]
mat[idx][i + 1] = 1
mat[i + 1][idx] = 1
link = QuantumChannel(name=f"l{idx+1},{i+2}", **self.qchannel_args)
ll.append(link)
pn.add_qchannel(link)
n.add_qchannel(link)
if self.lines_number > self.nodes_number - 1:
for i in range(self.nodes_number - 1, self.lines_number):
while True:
a = get_randint(0, self.nodes_number - 1)
b = get_randint(0, self.nodes_number - 1)
if a != b and mat[a][b] == 0:
break
mat[a][b] = 1
mat[b][a] = 1
n = nl[a]
pn = nl[b]
link = QuantumChannel(name=f"l{a+1},{b+1}", **self.qchannel_args)
ll.append(link)
pn.add_qchannel(link)
n.add_qchannel(link)
self._add_apps(nl)
self._add_memories(nl)
return nl, ll