Source code for qns.network.topology.randomtopo

#    SimQN: a discrete-event simulator for the quantum networks
#    Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
#    University of Science and Technology of China, USTC.
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <https://www.gnu.org/licenses/>.

from qns.entity.node.app import Application
from qns.entity.qchannel.qchannel import QuantumChannel
from qns.entity.node.node import QNode
from typing import Dict, List, Optional, Tuple
from qns.network.topology import Topology
from qns.utils.rnd import get_randint


[docs]class RandomTopology(Topology): """ RandomTopology includes `nodes_number` Qnodes. The topology is randomly generated. """ def __init__(self, nodes_number, lines_number: int, nodes_apps: List[Application] = [], qchannel_args: Dict = {}, cchannel_args: Dict = {}, memory_args: Optional[List[Dict]] = {}): """ Args: nodes_number: the number of Qnodes lines_number: the number of lines (QuantumChannel) """ super().__init__(nodes_number, nodes_apps, qchannel_args, cchannel_args, memory_args) self.lines_number = lines_number
[docs] def build(self) -> Tuple[List[QNode], List[QuantumChannel]]: nl: List[QNode] = [] ll: List[QuantumChannel] = [] mat = [[0 for i in range(self.nodes_number)] for j in range(self.nodes_number)] if self.nodes_number >= 1: n = QNode(f"n{1}") nl.append(n) for i in range(self.nodes_number - 1): n = QNode(f"n{i+2}") nl.append(n) idx = get_randint(0, i) pn = nl[idx] mat[idx][i + 1] = 1 mat[i + 1][idx] = 1 link = QuantumChannel(name=f"l{idx+1},{i+2}", **self.qchannel_args) ll.append(link) pn.add_qchannel(link) n.add_qchannel(link) if self.lines_number > self.nodes_number - 1: for i in range(self.nodes_number - 1, self.lines_number): while True: a = get_randint(0, self.nodes_number - 1) b = get_randint(0, self.nodes_number - 1) if mat[a][b] == 0: break mat[a][b] = 1 mat[b][a] = 1 n = nl[a] pn = nl[b] link = QuantumChannel(name=f"l{a+1},{b+1}", **self.qchannel_args) ll.append(link) pn.add_qchannel(link) n.add_qchannel(link) self._add_apps(nl) self._add_memories(nl) return nl, ll