# SimQN: a discrete-event simulator for the quantum networks
# Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
# University of Science and Technology of China, USTC.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from qns.entity.node.app import Application
from qns.entity.qchannel.qchannel import QuantumChannel
from qns.entity.node.node import QNode
from typing import Dict, List, Optional, Tuple
from qns.network.topology import Topology
import math
[docs]class GridTopology(Topology):
"""
GridTopology includes `nodes_number` Qnodes. `nodes_number` should be a perfect square number.
The topology is a square grid pattern, where each node has 4 neighbors.
"""
def __init__(self, nodes_number, nodes_apps: List[Application] = [],
qchannel_args: Dict = {}, cchannel_args: Dict = {},
memory_args: Optional[List[Dict]] = {}):
super().__init__(nodes_number, nodes_apps, qchannel_args, cchannel_args, memory_args)
size = int(math.sqrt(self.nodes_number))
self.size = size
assert (size ** 2 == self.nodes_number)
[docs] def build(self) -> Tuple[List[QNode], List[QuantumChannel]]:
nl: List[QNode] = []
ll = []
for i in range(self.nodes_number):
n = QNode(f"n{i+1}")
nl.append(n)
if self.nodes_number > 1:
for i in range(self.nodes_number):
if (i + self.size) % self.size != self.size - 1:
link = QuantumChannel(name=f"l{i},{i+1}", **self.qchannel_args)
ll.append(link)
nl[i].add_qchannel(link)
nl[i + 1].add_qchannel(link)
if i + self.size < self.nodes_number:
link = QuantumChannel(name=f"l{i},{i+self.size}", **self.qchannel_args)
ll.append(link)
nl[i].add_qchannel(link)
nl[i + self.size].add_qchannel(link)
self._add_apps(nl)
self._add_memories(nl)
return nl, ll