Source code for qns.network.topology.erdosrenyitopo

#    SimQN: a discrete-event simulator for the quantum networks
#    Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
#    University of Science and Technology of China, USTC.
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <https://www.gnu.org/licenses/>.

import itertools
from qns.entity.node.app import Application
from qns.entity.qchannel.qchannel import QuantumChannel
from qns.entity.node.node import QNode
from typing import Dict, List, Optional, Tuple
from qns.network.topology import Topology
from qns.utils.rnd import get_rand


[docs] class ErdosRenyiTopology(Topology): """ ErdosRenyiTopology includes `nodes_number` Qnodes. The topology is randomly generated following the Erdos-Renyi model(G(n,p) Model). Each pair of Qnodes has a probability `generate_prob` to be connected by a QuantumChannel. """ def __init__(self, nodes_number, generate_prob: float, nodes_apps: List[Application] = [], qchannel_args: Dict = {}, cchannel_args: Dict = {}, memory_args: Optional[List[Dict]] = {}): """ Args: nodes_number: the number of Qnodes generate_prob: the probability of QuantumChannel generation between two Qnodes """ super().__init__(nodes_number, nodes_apps, qchannel_args, cchannel_args, memory_args) self.generate_prob = generate_prob
[docs] def build(self) -> Tuple[List[QNode], List[QuantumChannel]]: nl: List[QNode] = [] ll: List[QuantumChannel] = [] # generate Qnodes for i in range(self.nodes_number): n = QNode(f"n{i+1}") nl.append(n) # generate QuantumChannels edges = list(itertools.combinations(nl, 2)) for n1, n2 in edges: if get_rand() < self.generate_prob: qc = QuantumChannel(name=f"l{n1}-{n2}", **self.qchannel_args) ll.append(qc) n1.add_qchannel(qc) n2.add_qchannel(qc) # QNode configuration self._add_apps(nl) self._add_memories(nl) return nl, ll