# SimQN: a discrete-event simulator for the quantum networks
# Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
# University of Science and Technology of China, USTC.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import numpy as np
from qns.models.qubit.const import OPERATOR_PAULI_I
from qns.models.qubit.errors import QGateStateJointError, OperatorError
[docs]def kron(a: np.ndarray, b: np.ndarray) -> np.ndarray:
if a.shape == (1,):
a = a.reshape((1, 1))
if b.shape == (1,):
b = b.reshape((1, 1))
return (a[:, None, :, None]*b[None, :, None, :]).reshape(a.shape[0]*b.shape[0], a.shape[1]*b.shape[1])
[docs]def single_gate_expand(qubit, operator: np.ndarray) -> np.ndarray:
state = qubit.state
if operator.shape != (2, 2):
raise OperatorError
# single qubit operate
try:
idx = state.qubits.index(qubit)
except ValueError:
raise OperatorError
full_operator = np.array([1])
for i in range(state.num):
if i == idx:
full_operator = kron(full_operator, operator)
else:
full_operator = kron(full_operator, OPERATOR_PAULI_I)
return full_operator
[docs]def joint(qubit1, qubit2) -> None:
if qubit1.state == qubit2.state:
return
if len(set(qubit1.state.qubits) & set(qubit2.state.qubits)) > 0:
raise QGateStateJointError
from qns.models.qubit.qubit import QState
nq = QState(qubit1.state.qubits+qubit2.state.qubits,
rho=kron(qubit1.state.rho, qubit2.state.rho))
for q in nq.qubits:
q.state = nq
[docs]def partial_trace(rho: np.ndarray, idx: int) -> np.ndarray:
"""
Calculate the partial trace
Args:
rho: the density matrix
idx (int): the index of removing qubit
Returns:
rho_res: the left density matric
"""
num_qubit = int(np.log2(rho.shape[0]))
qubit_axis = [(idx, num_qubit + idx)]
minus_factor = [(i, 2 * i) for i in range(len(qubit_axis))]
minus_qubit_axis = [(q[0] - m[0], q[1] - m[1])
for q, m in zip(qubit_axis, minus_factor)]
rho_res = np.reshape(rho, [2, 2] * num_qubit)
qubit_left = num_qubit - len(qubit_axis)
for i, j in minus_qubit_axis:
rho_res = np.trace(rho_res, axis1=i, axis2=j)
if qubit_left > 1:
rho_res = np.reshape(rho_res, [2 ** qubit_left] * 2)
return rho_res