# SimQN: a discrete-event simulator for the quantum networks
# Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
# University of Science and Technology of China, USTC.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from typing import Any, List, Optional
import numpy as np
from qns.models.qubit.const import QUBIT_STATE_0, QUBIT_STATE_1, \
QUBIT_STATE_P, QUBIT_STATE_N, QUBIT_STATE_L, QUBIT_STATE_R
from qns.models.qubit.utils import single_gate_expand, partial_trace, kron
from qns.models.core.backend import QuantumModel
from qns.models.qubit.errors import QStateBaseError, QStateQubitNotInStateError, \
QStateSizeNotMatchError, OperatorNotMatchError
from qns.utils.rnd import get_rand
[docs]class QState(object):
"""
QState is the state of one (or multiple) qubits
"""
def __init__(self, qubits: List["Qubit"] = [], state: Optional[np.ndarray] = QUBIT_STATE_0,
rho: Optional[np.ndarray] = None, name: Optional[str] = None):
"""
Args:
qubits (List[Qubit]): a list of qubits in this quantum state
state: the state vector of this state, either ``state`` or ``rho`` can be used to present a state
rho: the density matrix of this state, either ``state`` or ``rho`` can be used to present a state
name (str): the name of this state
"""
self.num = len(qubits)
self.name = name
self.qubits = qubits
self.rho = None
if rho is None:
if len(state) != 2**self.num:
raise QStateSizeNotMatchError
self.rho = np.dot(state, state.T.conjugate())
else:
if self.num != np.log2(rho.shape[0]) or self.num != np.log2(rho.shape[1]):
raise QStateSizeNotMatchError
if abs(1 - rho.trace()) > 0.0000000001:
# trace = 1
raise QStateSizeNotMatchError
self.rho = rho
[docs] def measure(self, qubit: "Qubit" = None, base: str = "Z") -> int:
"""
Measure this qubit using Z basis
Args:
qubit (Qubit): the measuring qubit
base: the measure base, "Z", "X" or "Y"
Returns:
0: QUBIT_STATE_0 state
1: QUBIT_STATE_1 state
"""
M_0 = None
M_1 = None
S_0 = None
S_1 = None
if base == "Z":
M_0 = np.array([[1, 0], [0, 0]])
M_1 = np.array([[0, 0], [0, 1]])
S_0 = QUBIT_STATE_0
S_1 = QUBIT_STATE_1
elif base == "X":
M_0 = 1/2 * np.array([[1, 1], [1, 1]])
M_1 = 1/2 * np.array([[1, -1], [-1, 1]])
S_0 = QUBIT_STATE_P
S_1 = QUBIT_STATE_N
elif base == "Y":
M_0 = 1/2 * np.array([[1, -1j], [1j, 1]])
M_1 = 1/2 * np.array([[1, 1j], [-1j, 1]])
S_0 = QUBIT_STATE_R
S_1 = QUBIT_STATE_L
else:
raise QStateBaseError
try:
idx = self.qubits.index(qubit)
shift = self.num - idx - 1
assert (shift >= 0)
except AssertionError:
raise QStateQubitNotInStateError
Full_M_0 = np.array([[1]])
Full_M_1 = np.array([[1]])
for i in range(self.num):
if i == idx:
Full_M_0 = kron(Full_M_0, M_0)
Full_M_1 = kron(Full_M_1, M_1)
else:
Full_M_0 = kron(Full_M_0, np.array([[1, 0], [0, 1]]))
Full_M_1 = kron(Full_M_1, np.array([[1, 0], [0, 1]]))
poss_0 = np.trace(np.dot(Full_M_0.T.conjugate(), np.dot(Full_M_0, self.rho)))
rn = get_rand()
if rn < poss_0:
ret = 0
ret_s = S_0
self.rho = np.dot(Full_M_0, np.dot(self.rho, Full_M_0.T.conjugate())) / poss_0
else:
ret = 1
ret_s = S_1
self.rho = np.dot(Full_M_1, np.dot(self.rho, Full_M_1.T.conjugate())) / (1-poss_0)
self.rho = partial_trace(self.rho, idx)
self.num -= 1
self.qubits.remove(qubit)
ns = QState([qubit], state=ret_s)
qubit.state = ns
return ret
[docs] def operate(self, operator: np.ndarray):
"""
transform using `operator`
Args:
operator (np.ndarray): the operator
Raises:
OperatorNotMatchError
"""
operator_size = operator.shape
if operator_size == (2**self.num, 2**self.num):
# joint qubit operate
full_operator = operator
else:
raise OperatorNotMatchError
self.rho = np.dot(full_operator, np.dot(self.rho, full_operator.T.conjugate()))
[docs] def stochastic_operate(self, list_operators: List[np.ndarray] = [], list_p: List[float] = []):
"""
A stochastic operate progess. It usually turns a pure state into a mixed state.
Args:
list_operators (List[np.ndarray]): a list of operators
list_p (List[float]): a list of possibility
Raises:
OperatorNotMatchError
"""
new_state = np.zeros((2**self.num, 2**self.num), dtype=complex)
if len(list_operators) != len(list_p):
raise OperatorNotMatchError("Not match number between operators and possibilities")
sum = 0.0
for p in list_p:
if p < 0 or p > 1:
raise OperatorNotMatchError("possibility not in range")
sum += p
if abs(1-sum) >= 1e-6:
raise OperatorNotMatchError("Probabilities are not normalized")
for idx, operator in enumerate(list_operators):
operator_size = operator.shape
if operator_size == (2**self.num, 2**self.num):
full_operator = operator
else:
raise OperatorNotMatchError
new_state += list_p[idx] * np.dot(full_operator, np.dot(self.rho, full_operator.T.conjugate()))
self.rho = new_state
[docs] def equal(self, other_state: "QState") -> bool:
"""
compare two state vectors, return True if they are the same
Args:
other_state (QState): the second QState
"""
return np.all(self.rho == other_state.rho)
[docs] def is_pure_state(self, eps: float = 0.000_001) -> bool:
"""
Args:
eps: the accuracy
Returns:
bool, if the state is a pure state
"""
return abs(np.trace(np.dot(self.rho, self.rho)) - 1) <= eps
[docs] def state(self) -> np.ndarray:
"""
If the state is a pure state, return the state vector, or return None
Returns:
The pure state vector
"""
if not self.is_pure_state():
print(self.rho.T.conjugate() * self.rho)
return None
evs = np.linalg.eig(self.rho)
max_idx = 0
for idx, i in enumerate(evs[0]):
if i > evs[0][max_idx]:
max_idx = idx
return evs[1][:, max_idx].reshape((2**self.num, 1))
def __repr__(self) -> str:
if self.name is not None:
return "<qubit state "+self.name+">"
return str(self.rho)
[docs]class Qubit(QuantumModel):
"""
Represent a qubit
"""
def __init__(self, state=QUBIT_STATE_0, rho: np.ndarray = None,
operate_decoherence_rate: float = 0, measure_decoherence_rate: float = 0,
name: Optional[str] = None):
"""
Args:
state (list): the initial state of a qubit, default is |0> = [1, 0]^T
operate_decoherence_rate (float): the operate decoherence rate
measure_decoherence_rate (float): the measure decoherence rate
name (str): the qubit's name
"""
self.name = name
self.state = QState([self], state=state, rho=rho)
self.operate_decoherence_rate = operate_decoherence_rate
self.measure_decoherence_rate = measure_decoherence_rate
[docs] def measure(self):
"""
Measure this qubit using Z basis
Returns:
0: QUBIT_STATE_0 state
1: QUBIT_STATE_1 state
"""
self.measure_error_model(decoherence_rate=self.measure_decoherence_rate)
return self.state.measure(self)
[docs] def measureX(self):
"""
Measure this qubit using X basis.
Returns:
0: QUBIT_STATE_P state
1: QUBIT_STATE_N state
"""
self.measure_error_model(self.measure_decoherence_rate)
return self.state.measure(self, "X")
[docs] def measureY(self):
"""
Measure this qubit using Y basis.
Only for not entangled qubits.
Returns:
0: QUBIT_STATE_R state
1: QUBIT_STATE_L state
"""
self.measure_error_model(self.measure_decoherence_rate)
return self.state.measure(self, "Y")
[docs] def measureZ(self):
"""
Measure this qubit using Z basis
Returns:
0: QUBIT_STATE_0 state
1: QUBIT_STATE_1 state
"""
self.measure_error_model(self.measure_decoherence_rate)
return self.measure()
[docs] def operate(self, operator: Any) -> None:
"""
Perfrom a operate on this qubit
Args:
operator (Union[SingleQubitGate, np.ndarray]): an operator matrix, or a quantum gate in qubit.gate
"""
self.operate_error_model(self.operate_decoherence_rate)
from qns.models.qubit.gate import SingleQubitGate
if isinstance(operator, SingleQubitGate):
operator(self)
return
full_operator = single_gate_expand(self, operator)
self.state.operate(full_operator)
def _operate_without_error(self, operator: Any) -> None:
"""
Perfrom a operate on this qubit
Args:
operator (Union[SingleQubitGate, np.ndarray]): an operator matrix, or a quantum gate in qubit.gate
"""
from qns.models.qubit.gate import SingleQubitGate
if isinstance(operator, SingleQubitGate):
operator(self)
return
full_operator = single_gate_expand(self, operator)
self.state.operate(full_operator)
[docs] def stochastic_operate(self, list_operators: List[np.ndarray] = [], list_p: List[float] = []):
"""
A stochastic operate on this qubit. It usually turns a pure state into a mixed state.
Args:
list_operators (List[np.ndarray]): a list of operators
list_p (List[float]): a list of possibility
Raises:
OperatorNotMatchError
"""
from qns.models.qubit.gate import SingleQubitGate
full_operators_list = []
for operator in list_operators:
if isinstance(operator, SingleQubitGate):
full_operators_list.append(single_gate_expand(self, operator._operator))
else:
full_operators_list.append(single_gate_expand(self, operator))
self.state.stochastic_operate(full_operators_list, list_p)
def __repr__(self) -> str:
if self.name is not None:
return "<qubit "+self.name+">"
return super().__repr__()
[docs] def store_error_model(self, t: Optional[float] = 0, decoherence_rate: Optional[float] = 0, **kwargs):
"""
The default error model for storing a qubit in quantum memory.
The default behavior is doing nothing
Args:
t: the time stored in a quantum memory. The unit it second.
decoherence_rate (float): the decoherence rate in Db.
kwargs: other parameters
"""
pass
[docs] def transfer_error_model(self, length: Optional[float] = 0, decoherence_rate: Optional[float] = 0, **kwargs):
"""
The default error model for transmitting this qubit
The default behavior is doing nothing
Args:
length (float): the length of the channel
decoherence_rate (float): the decoherence rate
kwargs: other parameters
"""
pass
[docs] def operate_error_model(self, decoherence_rate: Optional[float] = 0, **kwargs):
"""
The error model for operating a qubit.
This function will change the quantum state.
Args:
decoherence_rate (float): the decoherency rate
kwargs: other parameters
"""
pass
[docs] def measure_error_model(self, decoherence_rate: Optional[float] = 0, **kwargs):
"""
The error model for measuring a qubit.
This function will change the quantum state.
Args:
decoherence_rate (float): the decoherency rate
kwargs: other parameters
"""
pass